

Tetrahedron Letters 41 (2000) 9977-9980

Toward the synthesis of the antibiotic tetrodecamycin[†]

Franz F. Paintner,* Gerd Bauschke and Marion Kestel

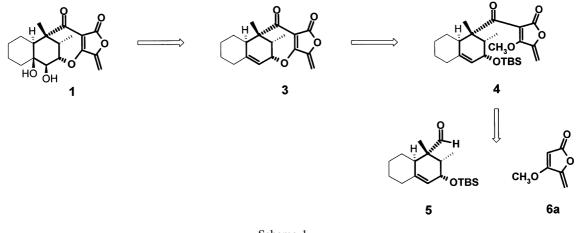
Institut für Pharmazie–Zentrum für Pharmaforschung, Ludwig-Maximilians-Universität München, Butenandtstraße 5–13, Haus C, D-81377, Germany

Received 12 September 2000; accepted 11 October 2000

Abstract

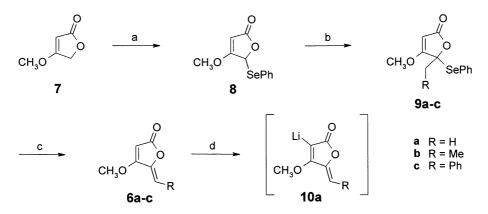
We report here a short approach to a tricyclic substructure of tetrodecamycin exhibiting a unique ring skeleton utilising an acid catalysed ring closure as the key step. In addition an efficient three-step synthesis of 5-alkylidene 4-methoxy-2(5*H*)-furanones starting from 4-methoxy-2(5*H*)-furanone is described. \bigcirc 2000 Elsevier Science Ltd. All rights reserved.

Keywords: antibiotics; furanones; cyclisation.

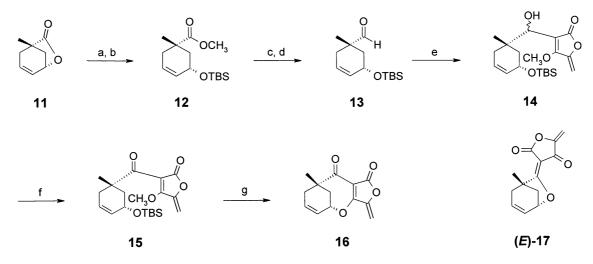

Tetrodecamycin 1 is a novel tetronic acid based antibiotic isolated from the culture broth of *Streptomyces nashvillensis* MJ885-mF8. It shows distinct activity against Gram-positive bacteria including *Bacillus anthracis* as well as methicillin resistant *Staphylococcus aureus* (MRSA).¹ On the other hand dihydrotetrodecamycin 2, isolated together with 1 from the *Streptomyces* strain, does not show such an effect revealing the crucial role of the *exo*-methylene moiety in 1 for antibacterial activity.² The unique ring skeleton and absolute stereochemistry of compound 1 were fully elucidated by spectral means and X-ray crystallography.^{3,4} However, so far no approach to the total synthesis of 1 or 2 has been reported.

Our retrosynthetic analysis of the skeleton of 1 is outlined in Scheme 1. The tetracyclic intermediate 3 was envisioned to arise from two key operations: (a) the hydroxyalkylation of the known 4-methoxy-5-methylene-2(5H)-furanone (**6a**)⁵ with chiral aldehyde 5 followed by an

^{*} Corresponding author. Fax: (+49) 089-2180-7247; e-mail: ffpai@cup.uni-muenchen.de


[†] Dedicated to Professor Dr. Dr. h.c. F. Eiden on the occasion of his 75th birthday.

Scheme 1.

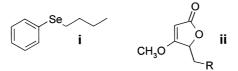

oxidation step to give 4,⁶ and (b) deprotection of the allylic hydroxyl group followed by ring closure. Having compound 3 available stereoselective *cis* dihydroxylation should provide the target molecule 1 in a single step. In this letter we describe our approach to a tricyclic substructure of 3 (bold type in Scheme 1) containing the crucial seven-membered ring.

We selected 4-methoxy-5-phenylseleno-2(5*H*)-furanone (8), readily prepared from commercially available 4-methoxy-2(5*H*)-furanone (7), as the key intermediate for a new, short and efficient approach to building block **6a** as well as to 5-alkylidene 4-methoxy-2(5*H*)-furanones in general (Scheme 2).⁷ Alkylation of 8 and subsequent oxidative removal of the phenylseleno group using MCPBA gave the 5-alkylidene derivatives **6a**–**c**⁸ in good overall yields (56–68% from 7). The success of the alkylation reactions to form **9a–c**, however, was strongly dependent on the bases employed. Generating the enolate with *n*-BuLi resulted in the cleavage of the C5–Se bond to a considerable extent.⁹ Thus in the case of the methylation reaction compound **9a** was obtained in only moderate yield (52%). This side-reaction could be avoided using *tert*-BuLi as the base, resulting in substantially higher yields of the alkylation products (**9a**: 82%).

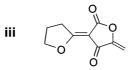
Scheme 2. (a) (i) *n*-BuLi, THF, -78° C; (ii) PhSeCl, -78° C (90%); (b) (i) *tert*-BuLi, THF, -78° C; (ii) RCH₂X, -78° C to rt [**9a**: (R = H, X = I) 82%; **9b**: (R = Me, X = I) 65%; **9c**: (R = Ph, X = Br) 76%]; (c) MCPBA, CH₂Cl₂, 0°C [**6a**: 92%; **6b**: 95%; **6c**: 91%]; (d) LDA, THF, -78° C

The synthesis of our tricyclic target molecule 16 was initiated by opening the known bicyclic lactone 11, readily available from 1-methyl-3-cyclohexenoic acid¹⁰ using NaOMe to obtain the corresponding alcohol which was protected as a *tert*-butyl-dimethylsilyl ether to form 12 in 70% overall yield (Scheme 3). DIBAL reduction of the ester 12 yielded the primary alcohol which was converted to the aldehyde 13 by Swern oxidation (84% from 12). Hydroxyalkylation of 6a was achieved by converting **6a** first into the α -lithio derivative **10a**^{6b,c} and then by reacting it with the aldehyde 13 to form 14 in 73% yield (1:1 mixture of diastereomers). Swern oxidation of the hydroxyalkylation product 14 gave acyl tetronate 15 in satisfactory yield (78%) whereas use of other oxidants (e.g. MnO₂, PDC) resulted in distinctly lower yields. Finally the key step in our synthesis—deprotection of the *tert*-butyldimethylsilyl protected hydroxyl group in 15 followed by cyclisation to give 16—was carried out in a one pot reaction by treating 15 with 2.5 equiv. H_2SO_4 (96%) in CH_2Cl_2 at 0°C for 1 h. Thus compound 16 was isolated in good yield (70%).¹¹ Application of the more 'classic' silvl ether cleavage conditions, 5-10% HF (48%) in acetonitrile at 0°C, led to the formation of 16 in varying yields (up to 55%). In these cases the product was also accompanied with considerable amounts of the regioisomeric cyclisation product 17 (\sim 1:1 mixture of E-Z isomers).¹²

Scheme 3. (a) NaOMe, MeOH, rt; (b) TBDMSCl, imidazole, DMF, rt (70% from 11); (c) DIBAL, THF, -78° C; (d) oxalyl chloride, DMSO, Et₃N, CH₂Cl₂, -60° C to rt (84% from 12); (e) 10a, -78° C to -40° C (73%); (f) oxalyl chloride, DMSO, Et₃N, CH₂Cl₂, -60° C (78%); (g) H₂SO₄, CH₂Cl₂, 0° C (70%)


In conclusion, we have developed an efficient approach to a substructure of the tetrodecamycin 1 ring skeleton (seven steps, 23% overall yield). Further investigations toward the total synthesis of 1 are now in progress in our laboratory.

Acknowledgements


We are greatly indebted to Professor Dr. Klaus Th. Wanner for his generous support.

References

- 1. Tsuchida, T.; Sawa, R.; Iinuma, H.; Nishida, C.; Kinoshita, N.; Takahashi, Y.; Naganawa, H.; Sawa, T.; Hamada, M.; Takeuchi, T. J. Antibiot. 1994, 47, 386–388.
- Tsuchida, T.; Iinuma, H.; Nishida, C.; Kinoshita, N.; Sawa, T.; Hamada, M.; Takeuchi, T. J. Antibiot. 1995, 48, 1104–1109.
- Tsuchida, T.; Iinuma, H.; Sawa, R.; Nishida, C.; Takahashi, Y.; Nakamura, H.; Nakamura, K. T.; Sawa, T.; Naganawa, H.; Takeuchi, T. J. Antibiot. 1995, 48, 1110–1114.
- Tsuchida, T.; Iinuma, H.; Nakamura, K. T.; Nakamura, H.; Sawa, T.; Hamada, M.; Takeuchi, T. J. Antibiot. 1995, 48, 1330–1335.
- 5. Takeda, K.; Yano, S.; Sato, M.; Yoshii, E. J. Org. Chem. 1987, 52, 4135-4137.
- For prior synthesis of 3-acyl 5-alkylidene 4-methoxy-2(5H)-furanones following a similar strategy, see: (a) Ley, S. V.; Wadsworth, D. J. Tetrahedron Lett. 1989, 1001–1004. (b) Hori, K.; Nomura, K.; Mori, S.; Yoshii, E. J. Chem. Soc., Chem. Commun. 1989, 712–713. (c) Clemo, N. G.; Pattenden, G. Tetrahedron Lett. 1982, 581–584.
- Compound 6a has been prepared from 7 by Yoshii et al. in 72% overall yield following a four-step protocol (Ref. 5). However, this strategy is not applicable to 5-alkylidene 4-methoxy-2(5H)-furanones in general. For a prior synthesis of 5-alkylidene 4-methoxy-2(5H)-furanones starting from 7, see: Pelter, A.; Al-Bayati, R. I. H.; Ayoub, M. T.; Wynn, L.; Pardasani, P.; Hänsel, R. J. Chem. Soc., Perkin. Trans. 1 1987, 717–742.
- 8. In the case of compounds **6b** and **6c** Z-isomers were formed exclusively; **6b**: Clemo, N. G.; Gedge, D. R.; Pattenden, G. J. Chem. Soc., Perkin. Trans. 1 **1981**, 1448–1453.; **6c**: Ref. 7.
- This reaction is likely to proceed by attack of *n*-BuLi on the selenium atom to form i and the lithium enolate of 7 which is alkylated subsequently to yield ii (R=H, CH₃, Ph) or is protonated during aqueous workup to yield 7. By-products i and ii as well as compound 7 were found in the crude reaction mixtures and identified by comparison with authentic material.

- 10. Stork, G.; Logusch, E. W. Tetrahedron Lett. 1979, 3361-3364.
- All new compounds were characterised by ¹H and ¹³C NMR spectra and gave satisfactory elemental analyses. Compound 16: ¹H NMR (400 MHz, CDCl₃) δ = 1.22 (s, 3H, CH₃), 1.98 (m, 1H,), 2.13 (dd, J=6.4/16.5 Hz, 1H), 2.47 (m, 1H), 2.71 (m, 1H), 5.23 (d, J=2.8 Hz, 1H), 5.31 (d, J=2.8 Hz, 1H), 5.34 (m, 1H), 5.76 (m, 1H), 6.18 (m, 1H);¹³C NMR (100 MHz, CDCl₃): δ = 25.91, 34.42, 37.38, 44.82, 76.10, 96.10, 102.61, 121.47, 135.17, 148.17, 164.19, 164.45, 198.59.
- 12. A closely related structure has been proposed by Boll et al. for dehydrocarolic acid iii, a metabolite of *Penicillium cinerascens*:¹³ Jacobsen, J. P.; Reffstrup, T.; Cox, R. E.; Holker, J. S. E.; Boll, P. M. *Tetrahedron Lett.* **1978**, 1081–1084.

13. Bracken, A.; Raistrick, H. Biochem. J. 1947, 41, 569-575.